
Microcontroller (EEC421)

Lecture 5

Dr. Islam Mohamed

Electrical Engineering Department
Shoubra Faculty of Engineering, Benha University

Islam.ahmed@fen.bu.edu.eg

2

MicrocontrollerMicrocontroller

 Lecture 5: Moving Data

 INTRODUCTION

 MOVING DATA

 Addressing Modes

I. Immediate Addressing Mode

II. Register Addressing Mode

III. Direct Addressing Mode

IV. Indirect Addressing Mode

 External Data Moves

 Code Memory Read-Only Data Moves 51

 PUSH and POP Opcodes

 Data Exchanges

:

INTRODUCTION

• 8051 Instruction set indicates that:

 The ALU in combination with the registers can be controlled by
binary operational codes to perform arithmetic operations.

 Can transfer data inside the CPU.

 Can perform Logical and arithmetic manipulations.

 Can make decisions based on the manipulation results.

 Can move data into and out of the MCU.

:

INTRODUCTION

• Programming Steps

 Step (1): Define the problem to be solved.

 Step (2): Solution Plan.

 Step (3): Draw Flowchart.

 Step (4): Program code.

 Step (5): Check the results.

:

INTRODUCTION

 Step (1): Define the problem to be solved.

(i) Where are the inputs to the program?

 Direct data is available.

 Data is stored in registers R1-R7 of the selected register bank.

 Data is stored in memory location.

 Data is stored in memory location whose address is pointed by registers R1-R7

of selected register bank.

• Programming Steps

(ii) What is the operation to be perform? A+B , A*B, A-B, ……….

(iii) Where you want the output to be display or store?

:

INTRODUCTION

 Step (2): Solution Plan.

(i) How are you taking input data?

 Sensors

 Bluetooth

 Keyboard, ……

• Programming Steps

(ii) Which method you are using to solve the problem?

(iii) What are steps in this method?

(iii) How will you output the results?

: INTRODUCTION

 Step (3): Draw Flowchart.

• Programming Steps

• Example:

:

INTRODUCTION

 Step (4): Program.

 Go on putting the instructions instead of flowchart blocks

• Programming Steps

 Find the codes for instructions feed in 8051 MCU then

execute the program (get the results)

 Step (5): Check the results. .

:

INTRODUCTION

8051
INSTRUCTION

Data
Transfer

Logical

Branch Subroutine

Arithmetic

Bit
manipulation

:Data Transfer Instructions

• Perform the operation of transferring the data from one location to

another location.

• The location from which the data is transferred is called “the source”

location.

• The location to which place the data is placed that is called “the

destination” location.

• These instructions are just copy the data from the source to destination

but the data aren’t deleted from the source.

• Example: MOV A,R2  Copy the data from R2 to the accumulator (A)

:Data Transfer Instructions

• There are 28 distinct mnemonics that copy data from a source to a

destination, they may be divided into the following three main types:

1) MOV destination, source

2) PUSH source or POP destination

3) XCH destination, source

• Four addressing modes are used to access data:

1) Immediate addressing mode

2) Register addressing mode

3) Direct addressing mode

4) Indirect addressing mode

:Data Transfer Instructions

• The MOV opcodes involve data transfers within the 8051 memory. This

memory is divided into the following four distinct physical parts:

1) Internal RAM

2) Internal special-function registers

3) External RAM

4) Internal and external ROM

• following five types of opcodes are used to move data:

1: MOV, 2: MOVX, 3: MOVC

4: PUSH and POP

5: XCH

Addressing Modes

1) Immediate Addressing Mode

• The simplest way to get data to a destination is to make the source of

the data part of the opcode. The data source is then immediately

available as part of the instruction itself.

• When the 8051 executes an immediate data move, the program

counter is automatically incremented to point to the byte(s) following

the opcode byte in the program memory. Whatever data is found

there is copied to the destination address.

Addressing Modes

1) Immediate Addressing Mode

• The mnemonic for immediate data is the pound sign (#).

Occasionally,

• If one forgets to use the # for immediate data. The resulting opcode is

often a legal command that is assembled with no objections by the

assembler.

• Example: MOV A, #45h Copy the data 45h to A.

Addressing Modes

2) Register Addressing Mode

• Certain register names may be used as part of the opcode mnemonic

as sources or destinations of data. Registers A, DPTR, and R0 to R7

may be named as part of the opcode mnemonic. Other registers in

the 8051 may be addressed using the direct addressing mode.

• Remember that the registers used in the opcode as RO to R7 are the

ones that are currently chosen by the bank-select bits, RS0 and RSI in

the PSW.

Addressing Modes

2) Register Addressing Mode

• The following table shows all possible MOV opcodes using immediate
and register addressing modes:

Addressing Modes

2) Register Addressing Mode

• Examples

• Important Notes

• It is impossible to have immediate data as a destination.
• All numbers must start with a decimal number (0-9), or the assembler assumes the number is
a label.
• Register-to-register moves using the register addressing mode occur between registers A and
RO to R7.

Addressing Modes

3) Direct Addressing Mode

• All 128 bytes of internal RAM and the SFRs may be addressed directly

using the single byte address assigned to each RAM location and each

special-function register.

• Internal RAM uses addresses from 00 to 7Fh to address each byte. The

SFR addresses exist from 80h to FFh at the following locations:

Addressing Modes

3) Direct Addressing Mode

• Note the use of a leading O for all numbers that begin with an

alphabetic (alpha) character.

• RAM addresses 00 to 1Fh are also the locations assigned to the four

banks of eight working registers, RO to R7. This assignment means

that R2 of register bank O can be addressed in the register mode as

R2 or in the direct mode as 02h. The direct addresses of the working

registers are as follows:

Addressing Modes

3) Direct Addressing Mode

Addressing Modes

3) Direct Addressing Mode

The moves made possible using direct, immediate, and register addressing modes are as
follows:

Examples:

Addressing Modes

3) Direct Addressing Mode

• MOV instructions that refer to direct addresses above 7Fh that are

not SFRs will result in errors. The SFRs are physically on the chip; all

other addresses above 7Fh do not physically exist.

• Moving data to a port changes the port latch; moving data from a port

gets data from the port pins.

• Moving data from a direct address to itself is not predictable and

could lead to errors.

• Important Notes

Addressing Modes

4) Indirect Addressing Mode

• Remember: For all the addressing modes covered to this point,

the source or destination of the data is an absolute number or a

name.

• Inspection of the opcode reveals exactly what are the addresses

of the destination and source. For example, the opcode MOV

A,R7 says that the A register will get a copy of whatever data is in

register R7; MOV 33h,#32h moves the hex number 32 to hex

RAM address 33.

Addressing Modes

4) Indirect Addressing Mode

• The indirect addressing mode uses a register to hold the actual
address that will finally be used in the data move; the register itself is
not the address, but rather the number in the register.

• Indirect addressing for MOV opcodes uses register RO or RI, often
called "data pointers," to hold the address of one of the data
locations, which could be a RAM or an SFR address.

• The number that is in the pointing register (Rp) cannot be known un
less the history of the register is known. The mnemonic symbol used
for indirect addressing is the "at" sign, which is printed as@.

Addressing Modes
4) Indirect Addressing Mode

• The moves made possible are as follows:

• Examples:

External Addressing using MOVX and MOVC

• External Data Moves

• As discussed in Chapter 2, it is possible to expand RAM and ROM memory

space by adding external memory chips to the 8051 microcontroller.

• The external memory can be as large as 64K bytes for each of the RAM

and ROM memory areas.

• Opcodes that access this external memory always use indirect addressing

to specify the external memory.

• An X is added to the MOV mnemonics to serve as a reminder that the data
move is external to the 8051.

Figure shows that registers RO, R1, and the DPTR can be used to hold the address of the data
byte in external RAM. RO and RI are limited to external RAM address ranges of OOh to 0FFh,
while the DPTR register can address the maximum RAM space of 0000h to 0FFFFh.

External Addressing using MOVX and MOVC

• External Data Moves

External Addressing using MOVX and MOVC

• External Data Moves

• Examples

• Important Notes

• An external data moves must involve the A register.
• Rp can address 256 bytes; DPTR can address 64K bytes.
• MOVX is normally used with external RAM or 1/0 addresses.
• There are two sets of RAM addresses between 00 and 0FFh: one internal and one

external to the 8051.

External Addressing using MOVX and MOVC

• Code Memory Read-Only Data Moves

• Data moves between RAM locations and 8051 registers are made by using MOV and

MOYX opcodes.

• The data is usually of a temporary or "scratch pad" nature and disappears when the

system is powered down.

• There are times when access to a preprogrammed mass of data is needed, such as when

using tables of predefined bytes. This data must be permanent to be of repeated use

and is stored in the program ROM using assembler directives that store programmed

data anywhere in ROM that the programmer wishes.

External Addressing using MOVX and MOVC

• Code Memory Read-Only Data Moves

• Access to this data is made possible by using indirect addressing and the A register in

conjunction with either the PC or the DPTR, as shown in pervious Figure.

• In both cases, the number in register A is added to the pointing register to form the

address in ROM where the desired data is to be found.

• The data is then fetched from the ROM address so formed and placed in the A register.

The original data in A is lost, and the addressed data takes its place.

External Addressing using MOVX and MOVC

• Examples

• Important Notes

• The PC is incremented by one (to point to the next instruction) before it is
added to A to form the final address of the code byte.

• All data is moved from the code memory to the A register.
• MOVC is normally used with internal or external ROM and can address 4K of

internal or 64K bytes of external code.

32

• The PUSH and POP opcodes specify the direct address of the data.

• The data moves between an area of internal RAM, known as the

stack, and the specified direct address.

• The stack pointer special-function register (SP) contains the address

in RAM where data from the source address will be PUSHed, or

where data to be POPed to the destination address is found.

• The SP register actually is used in the indirect addressing mode but

is not named in the mnemonic. It is implied that the SP holds the

indirect address when ever PUSHing or POPing.

PUSH and POP Opcodes

33

Figure shows the operation of the stack pointer as data is PUSHed or
POPed to the stack area in internal RAM.

PUSH and POP Opcodes

34

• A PUSH opcode copies data from the source address to the stack.

• SP is incremented by one before the data is copied to the internal
RAM location contained in SP so that the data is stored from low
addresses to high addresses in the internal RAM.

• The stack grows up in memory as it is PUSHed. Excessive PUSHing
can make the stack exceed 7Fh (the top of internal RAM), after
which point data is lost.

• A POP opcode copies data from the stack to the destination address.

• SP is decremented by one after data is copied from the stack RAM
address to the direct destination to ensure that data placed on the

stack is retrieved in the same order as it was stored.

PUSH and POP Opcodes

35

PUSH and POP Opcodes

• Examples

36

PUSH and POP Opcodes

• Important Notes

• When the SP reaches FFh it "rolls over" to 00h (RO).
• RAM ends at address 7Fh; PUSHes above 7Fh result in

errors.
• The SP is usually set at addresses above the register

banks.
• The SP may be PUSHed and POPed to the stack.
• Direct addresses, not register names, must be used for

most registers.
• The stack mnemonics have no way of knowing which

bank is in use.

37

• MOV, PUSH, and POP opcodes all involve copying the data found in

the source address to the destination address; the original data in

the source is not changed.

• Exchange instructions actually move data in two directions: from

source to destination and from destination to source.

• All addressing modes except immediate may be used in the XCH

(exchange) opcodes:

Data Exchanges

38

Data Exchanges

• Examples

39

• All exchanges are internal to the 8051.

• All exchanges use register A.

• When using XCHD, the upper nibble of A and the upper nibble of the

address location in Rp do not change.

Data Exchanges

• Important Notes

• This section concludes the listing of the various data moving
instructions; the remaining sections will concentrate on using
these opcodes to write short programs.

